Numerical differentiation from a viewpoint of regularization theory

نویسندگان

  • Shuai Lu
  • Sergei V. Pereverzyev
چکیده

In this paper, we discuss the classical ill-posed problem of numerical differentiation, assuming that the smoothness of the function to be differentiated is unknown. Using recent results on adaptive regularization of general ill-posed problems, we propose new rules for the choice of the stepsize in the finite-difference methods, and for the regularization parameter choice in numerical differentiation regularized by the iterated Tikhonov method. These methods are shown to be effective for the differentiation of noisy functions, and the order-optimal convergence results for them are proved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Order Numerical Differentiation with B-spline Functions

Smoothing noisy data with spline functions is well known in approximation theory. Smoothing splines have been used to deal with the problem of numerical differentiation. In this paper, we extend this method to estimate the fractional derivatives of a smooth signal from its discrete noisy data. We begin with finding a smoothing spline by solving the Tikhonov regularization problem. Then, we prop...

متن کامل

A Benchmark Evaluation of Large-Scale Optimization Approaches to Binary Tomography

Discrete tomography concerns the reconstruction of functions with a finite number of values from few projections. For a number of important real-world problems, this tomography problem involves thousands of variables. Applicability and performance of discrete tomography therefore largely depend on the criteria used for reconstruction and the optimization algorithm applied. From this viewpoint, ...

متن کامل

A numerical approach for solving a nonlinear inverse diusion problem by Tikhonov regularization

In this paper, we propose an algorithm for numerical solving an inverse non-linear diusion problem. In additional, the least-squares method is adopted tond the solution. To regularize the resultant ill-conditioned linear system ofequations, we apply the Tikhonov regularization method to obtain the stablenumerical approximation to the solution. Some numerical experiments con-rm the utility of th...

متن کامل

A Fictitious Time Integration Method for the Numerical Solution of the Fredholm Integral Equation and for Numerical Differentiation of Noisy Data, and Its Relation to the Filter Theory

The Fictitious Time Integration Method (FTIM) previously developed by Liu and Atluri (2008a) is employed here to solve a system of ill-posed linear algebraic equations, which may result from the discretization of a first-kind linear Fredholm integral equation. We rationalize the mathematical foundation of the FTIM by relating it to the well-known filter theory. For the linear ordinary different...

متن کامل

Multi-parameter Tikhonov Regularization – an Augmented Approach

We study multi-parameter regularization (multiple penalties) for solving linear inverse problems to promote simultaneously distinct features of the sought-for objects. We revisit a balancing principle for choosing regularization parameters from the viewpoint of augmented Tikhonov regularization, and derive a new parameter choice strategy called the balanced discrepancy principle. A priori and a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2006